Core Features
Knowledge Graphs
Integrate complex knowledge structures with our flexible graph database system.
Neural Memory
Persistent memory systems for long-term learning and adaptation.
Agent Communication
Seamless interaction protocols for multi-agent coordination.
Quick Start
pip install graphfusionai
from graphfusionai.agents import AgentBuilder
from graphfusionai.agents.base_agent import BaseAgent
from graphfusionai.core.graph import GraphNetwork
from graphfusionai.core.knowledge_graph import KnowledgeGraph
from graphfusionai.llm import create_llm # Import LLM integration
# Initialize core components
graph_network = GraphNetwork()
knowledge_graph = KnowledgeGraph()
# Create an LLM-powered agent
agent_builder = AgentBuilder(graph_network, knowledge_graph)
# Define agent configuration with LLM
agent_config = {
"memory": {"input_dim": 256, "memory_dim": 512, "context_dim": 128},
"llm": {
"provider": "openai", # Options: "openai", "anthropic", "llama"
"model": "gpt-4",
"api_key": "your-api-key-here"
},
"tools": ["search_tool", "medical_diagnosis_tool"]
}
# Create an agent
my_agent = agent_builder.create_agent(BaseAgent, "LLM_Agent", agent_config)
# Use the agent with LLM
query = "Explain the symptoms of diabetes."
response = my_agent.use_llm_for_query(query)
print(response)
Join Our Community
Be part of the future of multi-agent AI systems