Core Features
Knowledge Graphs
Integrate complex knowledge structures with our flexible graph database system.
Neural Memory
Persistent memory systems for long-term learning and adaptation.
Agent Communication
Seamless interaction protocols for multi-agent coordination.
Quick Start
pip install graphfusionai
from graphfusionai.agents import AgentBuilder from graphfusionai.agents.base_agent import BaseAgent from graphfusionai.core.graph import GraphNetwork from graphfusionai.core.knowledge_graph import KnowledgeGraph from graphfusionai.llm import create_llm # Import LLM integration # Initialize core components graph_network = GraphNetwork() knowledge_graph = KnowledgeGraph() # Create an LLM-powered agent agent_builder = AgentBuilder(graph_network, knowledge_graph) # Define agent configuration with LLM agent_config = { "memory": {"input_dim": 256, "memory_dim": 512, "context_dim": 128}, "llm": { "provider": "openai", # Options: "openai", "anthropic", "llama" "model": "gpt-4", "api_key": "your-api-key-here" }, "tools": ["search_tool", "medical_diagnosis_tool"] } # Create an agent my_agent = agent_builder.create_agent(BaseAgent, "LLM_Agent", agent_config) # Use the agent with LLM query = "Explain the symptoms of diabetes." response = my_agent.use_llm_for_query(query) print(response)
Join Our Community
Be part of the future of multi-agent AI systems